首页> 外文OA文献 >In Silico Modeling of Shear-Stress-Induced Nitric Oxide Production in Endothelial Cells through Systems Biology
【2h】

In Silico Modeling of Shear-Stress-Induced Nitric Oxide Production in Endothelial Cells through Systems Biology

机译:通过系统生物学对内皮细胞中剪应力诱导的一氧化氮产生的计算机模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nitric oxide (NO) produced by vascular endothelial cells is a potent vasodilator and an antiinflammatory mediator. Regulating production of endothelial-derived NO is a complex undertaking, involving multiple signaling and genetic pathways that are activated by diverse humoral and biomechanical stimuli. To gain a thorough understanding of the rich diversity of responses observed experimentally, it is necessary to account for an ensemble of these pathways acting simultaneously. In this article, we have assembled four quantitative molecular pathways previously proposed for shear-stress-induced NO production. In these pathways, endothelial NO synthase is activated 1), via calcium release, 2), via phosphorylation reactions, and 3), via enhanced protein expression. To these activation pathways, we have added a fourth, a pathway describing actual NO production from endothelial NO synthase and its various protein partners. These pathways were combined and simulated using CytoSolve, a computational environment for combining independent pathway calculations. The integrated model is able to describe the experimentally observed change in NO production with time after the application of fluid shear stress. This model can also be used to predict the specific effects on the system after interventional pharmacological or genetic changes. Importantly, this model reflects the up-to-date understanding of the NO system, providing a platform upon which information can be aggregated in an additive way.
机译:血管内皮细胞产生的一氧化氮(NO)是有效的血管扩张剂和抗炎介质。调节内皮源性一氧化氮的产生是一项复杂的工作,涉及多种信号和遗传途径,这些途径被多种体液和生物力学刺激所激活。为了全面了解实验中观察到的丰富响应,有必要考虑这些同时起作用的途径的整体。在本文中,我们组装了先前提出的用于剪切应力诱导的NO产生的四个定量分子途径。在这些途径中,内皮一氧化氮合酶被激活:1)通过钙释放; 2)通过磷酸化反应; 3)通过增强的蛋白质表达。在这些激活途径中,我们添加了第四条途径,即描述内皮一氧化氮合酶及其各种蛋白质伴侣产生实际一氧化氮的途径。使用CytoSolve组合并模拟了这些路径,CytoSolve是用于组合独立路径计算的计算环境。集成模型能够描述在施加流体剪切应力后,实验观察到的NO生成随时间的变化。在介入药理或遗传学改变之后,该模型还可用于预测对系统的特定作用。重要的是,该模型反映了对NO系统的最新了解,提供了一个平台,可以在此平台上以附加方式汇总信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号